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Preface

0

During the lifecycle of a system, a machine, a plant or

any facility; effectiveness of preventive maintenance,

performed on that system is the most important fact that

bounds the reliability,operating cost and useful life of the

syqtem. Anri the effcct ef the preventive mair,Lt,-_aiL on Lt

system should be studied during the design phase. Therefore,

models to predict the future reliability of a system, under

different scheduled preventive maintenance policies, are

needed by the design engineers during the early design and

planning processes. The purpose of this research is to

develop a model of scheduled preventive maintenance that

will allow the design engineer and logistic planners to

predict future, long term system reliability based on

scheduled preventive maintenance with different maintenance

periods and capabilities. The model uses Markov processes

but formulates the eqa-ti.ns as a linear, state variable

control system. C

This technique will simplify the Markov models of large

and complex systems. And will lead to a computer model which

runs fast, has low operating cost and consequently provides

higher sensitivity analyses. For

The only research project which uses this technique to
0

evaluate the system reliability under preventive maintenance 0
,on

was done by Captain Gregory R. Miller in March 1988.

Dl 3tributlon/ .. .ii i Availability Codes

__ -Avail and/or
Mat Speoll



His study on a single component system showed that using a

linear state, control system in formulation would simplify

the rather large, complex models which usually accompany

Markov models. I would like to acknowledge the help of his

study on expanding the technique to multicomponent systems.

And I would especially thank to my thesis advisor, Major

David G. Robinson. His advice and assistance has been in-

valuable.

M. Erdogan Gunes
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Abstract

Reliability, operating cost and useful life of a system is

depend on the effectiveness of the preventive maintenance

*0 performed over the life cycle of the system. Another very

important factor on long term reliability and overall sup-

portability of systems is the contact and information tiow

between design engineers and logistic planners. The purpose

of this rersearch is to develop a model of scheduled preven-

tive maintenance that will allow the design engineer and

* logistics planners to predict future, long term system

reliability based on scheduled preventive maintenance with

different maintenance periods and capabilities. The model

uses Markov processes but formulates the equations as a

linear, state variable control system. This technique will

simplify the Markov models of large and complex systems. And

will lead to a computer model which runs fast, has low

operating cost and consequently provides hiqher sensitivity

analyses. I

viii



MODELLING THE SCHEDULED PREVENTIVE MAINTENANCE

AS A LINEAR SYSTEM

I Introduction

Reliability, operating cost and useful life of a system

depend on the effectiveness of preventive maintenance, per-

formed over the life cycle of the system. During the design

process of a system, a main concern of the design engineer

is the decreasing reliability and subsequent scheduling of

preventive maintenance. While keeping the production of the

system on-time and on-budget the reliability of the system

should meet the customer's requirements. This is only poss-

ible by ensuring the reliability requirements during the

design process. After the system is in the field its relia-

bility will start decreasing, no matter how good it is de-

signed. The solution to insure that the system's reliability

remains above a certain minimum level during its useful life

is periodic preventive maintenance.

Preventive maintenance(PM) is any pre-scheduled task
or activity that is performed on an operational
system or facility with one of three objectives in
mind:
1. to prevent equipment deterioration and failure,
2. to detect incipient failure, and
3. to discover hidden failures in off-line systems

before an operating demand is made. Effective PM in-
volves all three objectives. All PM programs address
the first objective(10:120).



With the knowledge of desired useful life and projected

maintenance effectiveness, the design engineer could find

approximate preventive maintenance intervals required to

maintain a minimum reliability standard.

There are six methods to predict systems reliability per-

formance: Markov, piecepart count, network, Monte Carlo,

fault tree and decision analysis(3:125). Of these methods,

Markov analysis is the only low cost method for analyzing

complex systems and evaluating maintenance strategies. Piece

part counts are useful for no maintenance, nonredundant

hardware systems. Trees and network analysis are not useful

for anlyzing maintenance strategies. And Monte Carlo simula-

tions are expensive and very inefficient for sensitivity

analysis. This research will use Markov analysis to model

the preventive maintenance scheduling.

The Markov modeling provides a lot of advantages but it is

not free of weaknesses. Markov analysis of a system consists

of a set of components and several possible states for each

component. The problem is that the total number of states in

the model grows exponentially as the number of components in

the system increase, e.g. in a system with N components if

the characteristics of each component is modeled by M states

then the model would have total of MN states. This state

growth problem makes the method inefficient for low level

analysis of very complex systems.
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Statement of The Problem

Models to predict the future reliability of a system,

under different scheduled preventive maintenance policies

are needed by design engineers during the early design and

planning process. Such a model easy analysis of different

maintenance strategies and the operating cost of the model

should be low, this extensive sensitivity analyses become

possible. The only low-cost method which can be used on the

analysis of maintenance strategies is the Markov processes.

But the state growth problem limits the maximum number of

components in the system.

Research Question

To simplify the "state growth" problem of Markov proces-

ses; is it possible to use a state-space linear system for-

mulation with impulse inputs to model the nreventive mainte-

nance of a system by Markov processes?

Subsidiary Questions

1. What is the connection between elements of transition

,watrix of Markov processes and the elements of linear system

formulas?

2. Does the approach of linear state-space formulation re-

duce the number of states in Markov model of a system?

3. Does the linear state-space formulation reduce the num-

ber of computations in Markov model?

3



Research Objectives

This research will investigate a state-space linear system

formulation for modeling the preventive maintenance of a

system using Markov processes.

The research will first focus on one component of the sys-

tem which has three states representing the operating condi-

tions of component considering preventive maintenance. Then

the model will be generalized to multicomponent systems

where each component of the system has three states.

Design of an interactive computer model which can be used

by design engineers on "what-if" type studies will be the

main goal of the research. According to the formulation

steps, first an experimental program for a single component

will be designed. And then the final program for multicom-

ponent systems will be developed. The final program should:

1. be able to read system parameters either from a data

file or directly from keyboard.

2. produce a graphical output that shows the system relia-

bility during the given simulation time.

3. allow the user to run the same system with different

parameters without leaving the program (Ability to do quick

sensitivity analysis).

4. produce an output file which the system reliability is

recorded in time periods given by user.

4



Overview

Since this modeling technique is very new area a litera-

ture review in general sense is not possible. But the meth-

ods to predict the system reliability are addressed in the

following chapter, Chapter II. The advantages and disadvan-

tages of different methods compared and the reasons to

choose the Markov model for preventive maintenance are

listed.

Supported by the theory, concepts and assumptions of Mar-

kov processes, Chapter III presents the methodology used in

formulation of linear state-space modeling of single compo-

nent. The implementation of this model is demonstrated by

some example problems.

Chapter IV attempts to generalize the model to multicomp-

onent systems, and explains the system states along with

definition of the method to build the system matrixes. This

chapter also introduces some example problems to demonstrate

the program.

The summary and conclusions of this research is represent-

ed in chapter V. Implication of the model and further re-

search ares are also pointed.

The computer source codes are included as appendices to

this report.

5



II. Background:

Major Methods For System Reliability Prediction

And Markov Models

Reliability prediction of a new system during the planning

and design phases has become very important in both industry

and government. To obtain maximum reliability in the later

design and production stages, effective prediction methods

are needed by design engineers.

The important characteristics for a model are closed-form

solution, low operating cost and sensitivity analyses.

Powerful models should provide system output from component

input and permit closed-form mathematical solutions which

has lower operating costs and higher ability of sensitivity

analysis.

Most of the methods for predicting system reliability fall

into six classifications(3:125). These are Markov, piecepart

count, network, Monte Carlo, fault tree and Decision

analysis. Markov, piecepart count, network and fault tree

methods are based on closed-form solutions of mathematical

formulas and operate at relatively low cost. Monte Carlo

methods are more expensive, but have the capability to more

closely model specific system details(3:125). Capabilities

of four model are given by ref.(5:431) and repeated in

Tablel.

6



Capability Markov Piecepart Trees M. Carlo

Low operating
cost * * *

Sensitivity * * *

Coverage * * *

Time dependent
I/O * *

Generality of
system structure * *

Detailed system
factors modeling *

Maintainability
related O&S cost
prediction *

Table 1. Reliability prediction methods overview(5:431)

Piecepart Count

Piecepart count method is used on nonredundant hardware

systems and this involves estimating component failure rates

and counting the number of components(5:427). Then the

system reliability is a weighted sum of part failure rates.

Some properties of complex or fault-tolerant systems such as

imperfect failure coverage between redundant components,

preventive maintenance and non series parallel system struc-

ture makes the piecepart count method inappropriate(5:427).

7



Monte Carlo

The same reference(5:427) explains the advantage and dis-

advantages of Monte Carlo models as follows:

Monte Carlo methods most closely model specific
system details. On the other hand, the extensive sen-
sitivity analysis necessary for early stage system
design and logistics policy trade-offs is difficult
using Monte Carlo methods. Often the input data
necessary to run simulations is not available during
early design. This method is useful for modeling re-
quirements in detail, but does not allow low cost
testive predictions involving design uncertainty.

Fault Tree Analysis

One of the low-cost methods modeling complex system struc-

tures is network or fault tree analysis. In a fault tree

analysis, a system is represented by a fault tree which cor-

responds to the possible event sets leading to system

failure. The name "fault tree" may cause some misunderstand-

ings, the events in the fault tree are not limited to

"faults" but denote various happenings, outcomes or condi-

tions which were identified as relevant factors for the

occurrence of the top event(ll:310). This can be a system

malfunction, failure to achieve a certain goal, or other un-

desirable occurrences.

A typical tree may consist of several hundred events, and

it may be very time consuming to evaluate the entire fault

tree. The first step in a fault tree analysis is to reduce

the fault tree into minimal cutsets which are combinations

of basic events that lead to system failure. Therefore the

analysis is initiated by two data sets(8:359):

8



1. A list of cut sets for each unique system failure, and

2. The basic events and associated failure probabilities.

The system failure probability may be evaluated by first

calculating the probability of each cut set by multiplying

the basic event probabilities in that cut set, and then

estimating the system failure probability by summing the

probabilities of all the cut sets.

The use of fault trees offers major benefits for the
design of complex systems consisting of several
cross-linked subsystems with contradictory design re-
quirements, particularly when the design requires
involvement of various specialists. Typical examples
of such systems are nuclear reactors and microwave
communication networks. The fault tree has only
limited application for simple systems and for
systems in which the complexity is caused by multiple
applications of identical building blocks.(11:310).

Although the fault tree or network methods are very good

for complex system structures, they are not capable adress-

ing maintenance strategies. When predicting the reliability

of a repairable system, modeling the maintenance activity is

very important. The only non Monte Carlo modeling technique

which permits maintenance strategy analyses is the Markov

method(5:427).

Markov Models

Markov modeling is a flexible, graphically-assisted tech-

nique useful in quantitative "design for reliability" deci-

sion making, assessing conformance to reliability objec-

tives, and optimization of maintenance strategies for comp-

lex systems(6:290).

9



A Markov model consists of a number of system states and

transitions between them. Each state is detined by a state

vector, where each element of the vector takes on an integer

value within a defined range. An element can represent any

meaningful characteristic, such as the number of good compo-

nents of one type in the system, or the number of faulty

components of another type in use(4:17). Therefore in a

Markov model, a system is represented by a collection of

states and a probability model which defines the probability

of whether being in any particular state or transitioning

from one state to another.

The three basic assumptions in Markov models are:

1. The transitional probability from one state to another

is a function of time interval's length, not of the time of

transition(a homogeneous, stationary Markov chain).

2. The transitional probability is independent of past

transitions(memoryless property).

3. The probability of more than one transition in any in-

terval is very small(a Poisson process).

The main drawback in Markov models is that the number of

states grows exponentially according to number of components

in the system. For example in a system in which every com-

ponent has two states -either operational or failed- the

number of states is 2 where N is the number of components.

And it is 3 if a single component has three stat.., =tc.

Thus the ability to represent interdependent maintenance

strategies in large systems is very limited(3:125).

10



But Markov models offer some unique advantages to relia-

bility engineers. These benefits can be classified as in the

following list(3:125-126):

1. Stand-alone benefits;

- Models maintenance and support policy with relia-

bility.

- Models module dependencies through maintenance or

system structure.

- Ideally suited for "n-of-m" fault-tolerant systems

with identical components.

- Use as system testability model.

2. Enhancement of traditional system reliability evalua-

tion methods (fault trees, networks);

- Assists in early stage selection of an optimal main

tenance strategy when used in conjunction with

simulation.

- Permits cross-including validation of simulation

results for simpler maintenance policies.

3. Enhancement of traditional maintainability and logis-

tics support evaluation methods (simulations) to determine

optimal maintenance procedures, integrated logistics support

(ILS), and warranty/incentive contracts;

- Markov combines with fault trees or networks in a

hierarchial fashion.

- Markov provides an "in depth" look at key portions of

system maintenance dependency.

11
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I

- Output from component-level failure rate or design for

testability models feeds into a Markov model as

LRU/WRA level input.

In the next chapter preventive maintenance of a single

component will be modeled by the Markov method, accompanied

with associatedlinear system, state space formulation.

12



III. Model For Sinqle Component

Until this point, all major methods and models that are

used in system reliability prediction was listed. And the

reasons for choosing the Markov technique to model a sys-

tem's reliability under maintenance were addressed. In this

chapter first the Markov states and transitions of a single

component will be defined and the solution for a single

component's reliability without preventive maintenance will

be presented. Then after giving the basic concept of linear

system formulation the effect of preventive maintenance will

be added to the model. And the linear system formulation

technique will be used to simplify the Markov formulation.

At the end of the chapter the implementation of computer

model will be presented with some example problems.

Markov Processes

The different conditions of a component during it's opera-

tional life could be modeled as different states. In our mo-

del the conditions of a component will be presented by three

states:

1) Perfect, 2) Degraded, 3) Failed. When the component is in

state 1 which is called perfect, it is fully operational or

as good as new.

13



State 2 represents a condition of the component which is

neither fully operational nor failed.

And the state 3 represents the failed component which can

not operate without a maintenance action.

This Markov process models the component's operation by

transitions from one state to another. The probabilities of

transitioning from one state to another are provided by a

time history of the probabilities that the component oper-

ates in each of the three states. The sum of the probabili-

ties of being in state 1 and state 2 at any time gives the

component's reliability for that time. And the transition

matrix built by transition rates yields a solution which

gives the component's reliability as a function of time.

Three assumptions regulate the transitions. All assumptions,

used in this model will be discussed in more detail later,

but these assumptions will be given in the following parag-

raph to produce a more understandable text.

The three assumptions taken from Markov modeling of compo-

nent's operational life are:

1. Transition probabilities are a function of time inter-

val at which transition occurs, not of the time of transi-

tion. Therefore it is a homogeneous, stationary Markov

chain(l:112-141).

2. The transitional probabilities are not depend on the

number of past transitions(l:112-141).

3. The probability of more than one transition in any in-

terval is very small(9].

14



The state transition diagram of the component without pre-

ventive maintenance is given in Figure 1. Where Li, L2, L3

are the transition probabilities as they are assigned in

Table 2.

I-(LI+L2) 1-L3

1!

III

4FAILEDL

Figure 1. Component's state transition diagram
without preventive maintenance.

15



VALUE TRANSITION

Li From perfect to failed

L2 From perfect to degraded

L3 From degraded to failed

Table 2. Transition Probabilities.

Since the only maintenance we are concerned with is the

preventive maintenance, once the component fails it remains

inoperative. Therefore the State 3 is an absorbing state.

We can now build the component transition matrix using the

transition probabilities. And we can find the we find the

equation of operating states probabilities as a function of

time by using Chapman-Kolmogorov equation(2:272-295). The

transition matrix of the component without preventive main-

tenance is as follows:

P11 P 12 P 13 1 -(Ll+L2) L2 Li
T P21 P22 P23  0 1-L3 L3 (1)

P31 P32 P33  0 0 1

where, P,, is the transition probability from state (i) to

state (j). And T will represent the transition matrix of

single component without preventive maintenance. This matrix

leads to a system of linear homogeneous differential equa-

tions with constant coefficients. Solutions can be found

either through matrix methods, or through the simultaneous

solution of the resulting differential equations.

16



These differential equations will be derived in the

following calculations where P1 ,(t) represents the proba-

bility being in state (i) at time (t):

P,(t+dt) = [l-(Ll+L2)dt]P, (t) + 0(dt) (2) (2)

P 2 (t+dt) = [(L2)dt]P1 (t) + [l-(L3)dt]P 2 (t) + O(dt)

P3 (t+dt) = [(Ll)dt]P1 (t) + [(L3)dt)P 2 (t) + P 3 (t)dt

or,

P (t+dt) - P 1 (t) (Ll+L2)P1 (t)

dt

p2 (t+dt) - P2 (t)
2 dt (L2)P 1 (t) - (L3)P 2 (t)

dt

P3 (t+dt) - P3 (t)
(Ll)P 1 (t) + (L3)P 2 (t) (3)

dt

or,

. dP
* P- = - (Ll+L2)P(t)

dt

• dP 2
p 2  - (L2)P 1 (t) - (L3)P 2 (t)

dt

dP3
P3  = (Ll)P 1 (t) + (L3)P 2 (t) (4)

dt

The solutions to the three equations in (4) can lead to

closed-form solution of each state.

17



The sum of the probabilities of being in State 1(Pj), and

State 2(P2) at any time gives the component's reliability at

that time. After adding the effect of preventive maintenance

to the model and increasing the number of components in the

system, it is not always possible to find a closed-form

solution for system reliability by using this differential

equations. It is not efficient to seek a closed-form solu-

tion for every alternative system either. Since, the purpose

of this study is to find a model which works for any system,

we will leave this equations in the following form:

Pi -(LI+L2) 0 0 P1(t)

P2  L2 -L3 0 P2(t) (5)

P3  Ll L3 0 P3 (t)

or,

P(t) = (T - I) TP(t) (6)

where;

P(t) : matrix of state probability rate changes

P(t) : matrix of state probabilities at time (t)

T : transition matrix of the component without
preventive maintenance

I : Identity matrix in proper dimension with T.

And the component's reliability at time (t) is:

R(t) = P1(t) + P2 (t) (7)

18



or,

R(t)=[l 1 0 ] (t) (8)

Now before introducing the effect of the preventive main-

tenance into the model, we need to look at linear system

formulation technique. Because in case of preventive main-

tenance the right hand side of equation (6) needs more than

one term, and the theory behind the linear system formula-

tion will help to determine the new terms.

Linear System State-Space Equations and Solutions

A state space formulation for a linear, time invariant,

dynamic system is given by:

X = AX + BU (9)
Y = CX + DU (10)

For a general nth-order, 1-input, m-output state space model

A, B, C, D are matrices with dimensions n x n, n x 1, m x n,

and m x 1 respectively(10:246). We will not use the term DU

in (10). For the other terms in the formulation: X is the

matrix of system states, U is the matrix of inputs and Y is

the output matrix.

Solutions to (8) and (9) for continuous and discrete time

are given by Reid(7:246-294). The general solution for

continuous time and with D = 0 is:

19



X(t) = eAtX(0) + e" I e 'Ar B U(r) d(

and

Y(t) = CetX(0) + CeAt e 'r B U(T) dT (12)

where, X(O) is initial state at time t = 0.

As it is seen in (11) and (12) the solution of linear

state-space models for continuous time is very complicated,

and does not promise too much advantage for this study. But,

The real power of state-space methods comes with
digital analysis and digital simulation(7:245-246).

To see the real power of state-space analysis with the

support of digital computers, let us look at the discrete

time solution of (9) and (10) given by Reid(7:273):

XT(k) = AT XT(k-1) + BT UT(k-l) (13)

YT(k) CT XT(k) + DT UT(k-I) (14)

where;

UT(k) = U(t) , t E (kT, kT+T), (15)

AT eAT  , (16)

20



BT e ( e "  d7 ) B , (17)

0

and CT = C , DT =D (18)

Notice that. . . only the current input and the
current state are used to propagate to the next
state. All of the necessary memory about the
past state values is contained in the present
state, and so all past state values and past
input values can be discarded. This is fundamen-
tal to the state-space approach to digital simu-
lation of the linear invariant system (7:274).

By this discrete time step analysis, equations can be

evaluated by computer very efficiently. Because the itera-

tive solution set requires a minimum amount of storage and

by choosing proper time step values(T), system output can be

calculated for any given time very fast. The only drawback

is, the system output value is available only at this dis-

crete time steps.

But one can never do better than this with the
inherently discrete instants of time,kT. But one
wants a tighter spacing, one simply makes T
shorter(7:271).

Accuracy of the solution is dependent on the calculation

of AT and BT. The fastest and easiest way of calculation of

AT and BT is by the power series expansion method(7:274-

275):

21



A2 T2 A 3 T3

AT = I + AT + + + (19)
2! 3!

2 23

A T2 A2 T3

BT = ( IT + + + " B (20)
2! 3!

or by using a single power series:

A T2 A 2 T3

E = IT + + +" " (21)
2! 3!

Then,

AT = I + AE
(22)

B T = EB

The calculation of AT and BT may lead to some discussion

about convergence of power series and accuracy of model.

There are some methods, however to increase the accuracy of

this power series, and the decision belongs to the model

user to decide how much accuracy is needed or satisfactory

for his purpose.

Now we are ready to look at the effect of preventive

maintenance on the component. In the following section

preventive maintenance of the component will be introduced

into the model and the previous solution given by equations

(6) and (7) will be improved by knowledge of the linear

system discrete time solution technique.
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Preventive Maintenance of The Component

In the previous state transition diagram of the component,

Figure 1., the transitions caused by preventive maintenance

was not included. The state transition diagram with preven-

tive maintenance is given in Figure 2. This shows that there

is a transition from state 2 to state 1 with the rate of j,

provided by maintenance activity. The term u(t) is the step

input function which is equal to 1 during the maintenance

and zero otherwise.

I-(LI+L2) l-(L3+gu(t))

I II

PFECT DEGRADE

U(t)

Ll L3

III

FAILED

1

Figure 2. Component's state transition diagram
under preventive maintenance.
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According to that transition diagram the new transition

matrix becomes:

[-(Ll+L2) L2 Ll1
L u(t) l-(L3+4u(t)) L3 (23)

0 0 1

Note that it is not a simple transition matrix any longer.

To simplify the process we will use two transition matrices:

one representing the normal operation of component and the

other representing the maintenance activity. The state

transition diagram and transition matrix of the component

during normal operation are the same as given in Figure 1

and Eq. 1 respectively. The transition matrix to represent

the maintenance activity will be called as matrix M. State

transition diagram of component during the maintenance

activity is given in Figure 3 and the matrix M is given in

Eq. (24). During the maintenance there is no transition from

state 1 to either state 2 or state 3. Only possible transi-

tions are to stay in the current state or upcrade from state

2 to state 1.

1 0 0
M M 1 -1 0 (24)

0 0 1
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FAILED

* 1

Figure 3. Component's state transition diagram
during preventive maintenance.

If we rewrite the system differential equations given in

Eq. (4) by using the new transition probabilities we have:

* dP1
P1  = - (Ll+L2) P,(t) + pu (t) P2 (t)

dt

0 . dP 2
P 2 = - = (L2) P,(t) - (L3 + AU (t))P 2 (t)

dt

dP3
P3 = - =(U1) P,(t) + (L3) P2(t) (25)

dt
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or in matrix notation;

PI (LI+L2) 0 0 PI(t) 0 0 Pl(t)

P2  L2 -L3 0 P2 (t) + 0 0 P2 (t) u(t)

P3 L1 L3 0 JP3 (t) -1 0 0 0 [P3 (t)

or,

.P(t) (T- I) 'P(t) + (M- I) TU(t) (26)

where U(t) = P(t)u(t) and the reliability of component at a

given time is again:

R(t) = P1 (t) + P2 (t) [ 1 1 0 ] P(t) (27)

Now, from equations (26) and (27) it is very easy to see

the correspondence between our model and general linear

state-space formulation given by Eq.(9) and Eq.(i0). By

defining A, B, C, Y(t), X(t) and X(t) of Eq.(9) and Eq.(lO)

* as follows,

A (T- )

B (M -I)

C 1l 1 0]

X(t) = P(t)

X(t) = P(t)

Y(t) = R(t)

The linear state-space formulation of component under
preventivemaintenance becomes:

26
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X (t) = AX (t) + BU (t) (28)

Y (t) = CX (t) (29)

Solutions to the (28) and (29) are given directly by

equations (13) through (22). And now, to evaluate a com-

ponents reliability with givens LI, L2, L3, g, maintenance

period and a certain discrete time step value (T), we only

need to is to evaluate the equations (13) and (14)

iteratively with a digital computer.

Before showing the implementation of the computer model

with some examples, all the assumptions taken up to this

point will be summarized in the next section.

Assumptions of The Single Component Model

1. Transition probabilities are a function of the length

of the time interval in which transition occurs, not of the

time of transition. Therefore it is a homogeneous,

stationary Markov chain(l:112-141).

2. The transitional probabilities are not depend on the

number of past transitions(l:112-141).

3. The probability of more than one transition in any in-

terval is very small[9].

4. Maintenance action does not take any time or occurs at

an instance without interrupting the normal operation.

5. Aging does not have any effect on the maintenance.
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Program

Until this point, all the theory and the mathematical

0 concept for single component model was developed. Now, the

next step, is to translate the mathematical model into a

computer program. In this study the simulation language

* SIMSCRIPT II.5_PC was used for all programming purposes. Its

graphics capabilities provides a very good visual support.

The program accepts the input data either through the

keyboard or through a data file(INPUT.DAT). Input data

includes transition probabilities, LI, L2, L3, g, mainte-

nance period and total simulation time. The discrete time

step, T has a fixed value L. 0.1 seconds.

An initialization routine builds matrices A, B, and C and

calculates AT and PT by using Eq.(21) and (22). Since all

the elements in the transition matrices are less than one,

power series of AT with five terms expected to be reasonably

accurate. Actually, it is as accurate a6 si A .iyis after

the decimal point; which we will see later in validation

analysis. In case of perfect maintenance, g = 1, power

series for BT does not converge but, as we will see later it

still gives acceptable accuracy. Therefore the equations

that the program uses to calculate AT and BT become:

A2T2  A3T 3  AT
AT = I + AT + + +

2! 3! 4!
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AT 2  A2T3  A3T4

BT = B ( IT + + + }
2! 3! 4!

where T is the discrete time steps value for simulation.

After calculating the new matrices initialization writes

them into an output file called OUT.DAT. Then sets the

screen up for graphical output and starts the simulation

clock.

Three processes called, SYSTEM.OPERATION, MAINTENANCE and

OUTPUT work continuously until the end of the simulation and

update system variables in given periods.

SYSTEM.OPERATION cycles every T=0.1 seconds and updates

matrix X, by

XT(t) = ATXT(t-I) + INPUT.MATRIX

and resets the INPUT.MATRIX to zero.

Process MAINTENANCE cycles every maintenance period

seconds and calculates new INPUT.MATRIX as BTXT(t-1).

OUTPUT takes the current XT and calculates the new relia-

bility by multiplying matrix C with it in every discrete

time step T=0.1.

SIMSCRIPT's built-in "smart-graph" feature graphs the

value of reliability versus simulation time automatically.

This feature reduced the effort needed for programming and

made this task easier.
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Example Problem

In this section the application of the model will be

presented by an example problem. The input values for this

example problem are given in Table 3.

Ll = 0.005
L2 = 0.25
L3 = 0.1

Table 3. Problem Inputs

The transition matrices for this problem are:

.745 .25 .005] 1 0 0T 0 .9 .1 M = 1 0 0
0 0 1 0 0 1

And the matrices used in the model can be calculated as

follows:

F[-.255 0 0 0 1 0
A = (-I)T = .25 -. 1 0 B = (M-I) = 0 -l 0

.005 .1 0 [ 00]

C= [11 o]

and,

* .9748224 0 0 0 .0987358 0
AT = .0245604 .9900498 0 BT = 0 -.0982663 0

.0006172 .0099502 1 0 -.0004694 0
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We will run this problem with different maintenance

periods for total simulation times of 10 and 40 seconds. The

range of the reliability curves for different maintenance

periods defines an area which can be called the preventive

maintenance envelope. The upper bound for this envelope is

the value found by continuous preventive maintenance. This

is a theoretic situation, it means that the system is always

under preventive maintenance carried out simultaneously with

the normal operation. And it can be simulated by setting the

maintenance period to the value of discrete time steps,

T=0.1. The lower bound of the preventive maintenance en-

velope is defined by the value found in case of no main-

tenance. This situation can be simulated by simply setting

the maintenance period to a higher value then the simulation

time.

The value p=1 represents the perfect maintenance. That is

any component operating in state 2 will transition to state

1 after the maintenance with 100% probability.

In the next two pages Figure 4. and Figure 5. show the

preventive maintenance envelope for simulation times 10 and

40 seconds. Figure 6 and Figure 7. show the reliability

ranges for different maintenance periods in 10 and 40

seconds simulation times respectively.
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Analysis of The Results And Model Validation

Before using the model in real problems we need to be sure

whether it is yielding the right results. That is, a valida-

tion is needed. As pointed out earlier, the closed-form

solution to the model is not always available. The equations

in Eq.(25) can be solved for no maintenance( u(t) = 0 al-

ways) and continuous maintenance( u(t) = 1 always).

Now let's look at the case of no maintenance by setting

u(t) = 0

P1 (t) + (Ll+L2)P(t) = 0 (31)

P 2 (t) - (L2)P,(t) + (L3)P 2 (t) = 0 (32)

These two equations are enough to find the system

reliability because the system reliability is equal to the

sum of P1 and P2. First we will solve the Eq. (31) by Laplace

transformation method:

sP1 (s) - 1 + (Ll+L2)P(s) = 0

1
P, (S) 

1
s + (Ll+L2)

and by taking the inverse Laplace transform;

P1 (t) = e "(LI+L2)t (33)
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The Laplace transform for Eq.(32) is:

* L2
sP 2 (s) + (L3)P 2 (s) - = 0

s + (Ll+L2)

L2
* P2(s) =

(s+L3) (s+LI+L2)

and by taking the inverse Laplace transform;

L2 r1
P2 (t) = L+L2-L3 e(L3 )t - e "(Ll+L 2)t (34)

* Now from Eq.(33) and Eq.(34), the reliability for no main-

tenance, RN(t) is :

RN(t) = P1 (t) + P2 (t) (35)

1 (L2 )e
"(L3 )t - (LI-L3)e "(L+L2)t

LI+L2-L3

By setting u(t)=l we can find the differential equations

for continuous maintenance. Again the first two equations

are enough to find the reliability:

P1 (t) + (Ll+L2)Pi(t) - gP 2 (t) = 0 (36)

P2(t) - (L2)P1 (t) + (L3+14)P 2(t) = 0 (37)
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The Laplace transformations for these equations are:

* sP 1 (s) + (Ll+L2)P(s) -AP 2 (s) = 1

sP 2 (s) + (L3+A)P 2 (s) - (L2)P 1 (s) = 0

* This equations form a linear system with 2 equations and two

unknowns, and has to be solved simultaneously. Skipping the

intermediate steps, the solution for P1 (s) and P2 (s) is:

s + a L2
P1 (s) = , P 2 (s) = (38)

(s-x 1 ) (s-x 2) (s-x I ) (s-x 2 )

where;

a = L3 +A

b = Ll+L2+L3+g

c = (Ll+L2) (L3+A) - AL2 (39)

-b ± j b-4c
x1,2 =

2

And by taking inverse Laplace transform:

(x 1+a)et - (x 2+a)e2t
P1 (t) = (40)

xl - x

• eX4 t - eXit

P2 (t) = L2 (41)
xl -x 2
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From equations (40) and (41) the reliability function for

continuous maintenance, Rc(t) is as follows:

(x 1+a+L2)e4t - (x 2+a+L2)exlt
RC(t) = (42)

x I - x 2

By using RN(t) and Rc(t), it is possible to check the

values obtained by the computer model. Table 4. compares the

values for no maintenance and shows the difference between

exact solutions and the simulation results,

Time(sec.) R, (t) Model Difference

10 .54549740 .54549843 .00000103
20 .21454599 .21454655 .00000056
30 .08000995 .08001002 .00000027
40 .02951860 .02951869 .00000009

Table 4. Validation values for no maintenance case

As it is seen from the table, the model gives at least 6

digit accuracy . Comparison of the values in case of con-

tinuous maintenance is given in Table 5. Exact solutions are

found by Eq.(42) and the model values are found by setting

the maintenance period to discrete time step value, T=0.1

seconds.

The results are not as good as they were in no maintenance

case. Negative difference values between exact solution and

the model shows that the divergence of power series for BT

in case of A = 1 did not cause a significant problem.
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Time(sec.) RC(t) Model Difference

1 10 .80623154 .80578482 - .00045672
20 .64124389 .64098889 - .00025500
30 .51001939 .50989592 - .00012347
40 .40564875 .40561384 - .00003491

Table 5. Validation values for continuous maintenance

To see the effect of g, the same analysis is repeated for

= .5. The difference between exact solution and model de-

creased to the half of the values which obtained in Table 5.

Also the effect of the discrete time step value is studied.

For T = .05, the difference decreased but resulted in con-

siderable computational time. And the value T = .2 yielded

larger differences.

Now we need to answer the question that "is the model

* dependable for the case of continuous maintenance?". First,

the continuous maintenance is only a theoretical situation

and second, the results only provide an upper bound. Third,

let us try to make a real life analogy with the results of

Table 5. If the component in this simulation is an aircraft

engine and the discrete time steps represent a 2 hours

* flight then a 10 second simulation represents 200 flight

hours while a 40 second simulation representing 800 flight

hours. Clearly both simulation times are unnecessarily long

to analyze the effect of preflight and post flight controls.
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We can use the simulation times for 50 hour and 100 hour

periodic maintenance analysis respectively. In this case we

have chosen preventive maintenance periods or 2.5 seconds

and 5 seconds instead of .1 seconds. The expected difference

between the exact solution and the model becomes about

1.8x10 5 and 7.lxlO 7 . This indicates that in an actual

problem we can expect at least 4 digit accuracy. More ac-

curate results can be obtained by using longer simulation

times in conjunction with a shorter time increment T. These

are very good results, without resorting to the exact solu-

tion of a system of differential equations(which can be very

difficult for multicomponent systems). The number of dif-

ferential equations increase substantially as the number of

system states increase. For each component, another set of

equations need to be solved. But with this model, the only

thing needed to analyze a system is the system parameters.

In the next chapter, the model will be extended to the

multicomponent systems. The methods to construct the system

matrices for multicomponent systems will be explained.
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VI. Model For Multicomponent Systems

How To Interpret The Systems And How To Build System Matrices.

The linear state-space model for single component was

developed in Chapter III. And analysis of the simulation

results showed that the model is very efficient, fast and

reasonably accurate compared to the difficult, time

consuming solution of differential equations. The goal of

this chapter is to find a rnpric way to build system natri-

ces(A, B, C), for multicomponent systems. First, three

simple systems will be studied. The methods to generate the

system matrices will then be deduced from the results of

these systems.

In the case of multicomponent systems, one additional

assumption is necessary. It will be assumed that the operat-

ing condition of one component does not effect another

component's operation. In other words, effect of the over-

loading will be ignored in case of one of the legs of a

parallel system failed.

As in the last chapter, every component in the system will

have three states, perfect, degraded and failed. The same

terminology will be used for transition probabilities with

one additional piece of notation to i entify the component

number. For example, transition probability from perfect to

degraded for ith component is Lil.
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Two Components in Parallel

The system studied in this section has two components in

parallel. Each component has three states and corresponding

transition probabilities. Transition probabilities for

component 1 are LII, L12, L13 and gl. And the transition

probabilities for component 2 are L21, L22, L23 and 42 . The

system is pictured in Figure 8.

Component I
,-LII,LI2,LI3

Component 2
-L21, L22 ,L23

*g2

Figure 8. Two components in parallel.0l
To find the system states we need to define all possible

operating conditions of the system. By using combinations of

the states of component 1 and component 2, system states can

be determined and are listed in Table 6. P, D and F indicate

that the corresponding component is in a perfect, degraded

or failed condition. The probabilities in system state

transition matrices should be the multiplication of com-

ponents' transition probabilities. Because each of them will

represent a joint probability.
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For example, when both components are in perfect condition

or the system is in state 1, the probability of transition

0-c state 9(both components failed) is LIlxL21.

System Condition of Condition of
states component 1 component 2

1 P P
2 P D
3 P F
4 D P
5 D D
6 D F
7 F P
8 F D
9 F F

Table 6. System states for two component system.

Before constructing the system transition matrices, let us

simplify the notation somewhat. T1 and T2 will represent the

transition matrices of component 1 and component 2 during

operation. M1 and M2 will represent the transition matrices

of component 1 and component 2 for maintenance:

al a2 a3 1 0 0

T =[0 a4 a5 M1 a6 a7 0 (43)
0 0 1 0 0 1

b_ b2 b3 1 0 0

T2 = 0 b4 b5 M2 = b6 b7 0 (44)
0 0 1 0 0 1
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The definitions for the terms in matrices Ml, M2, TI, T2 are

as follows:

al = 1-(Ll+LI2), a2 = L12, a3 = LII, a4 = 1-L13, a6 = gI

a7 = i-Al and

bi = I-(L21+L22), b2 = L22, b3 = L21, b4 = I-L23, b6 = g2

b7 = 1-42.

Now the system transition matrix during normal operation is

as follows:

albl alb2 alb3 a2bl a2b2 a2b3 a3bl a3b2 a3b3
0 alb4 alb5 0 a2b4 a2b5 0 a3b4 a3b5
0 0 al 0 0 a2 0 0 a3
0 0 0 a4bl a4b2 a4b3 a5bl a5b2 a5b3

T 0 0 0 0 a4b4 a4b5 0 a5b4 a5b5
0 0 0 0 0 a4 0 0 a5
0 0 0 0 0 0 bl b2 b3
0 0 0 0 0 0 0 b4 b5
0 0 0 0 0 0 0 0 1

Matrix T is an upper triangular matrix because there is no

transition to perfect condition from any other state and0I
there is no transition from failQ states to degraded

states. The only possible change in system's operational

condition are to degrade, fail or remain in the same condi-

tion.

During the maintenance action, the only possible transi-

tion is from degraded state to perfect state, otherwise the

system remains in its previous condition. The state transi-

tion diagram for maintenance is given in Figure 9. Every box

represents a system state.
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Numbers inside the boxes shows the state number as they are

assigned in Table 6. And the letters in the boxes shows the

conditions of component 1 and component 2 respectively.

1 2 3
PP PD PF

6b6 a6b7 a6

DP a7b6 D DF
a7 a7b71 a7 j

7 8 9
FP b6 FD FF

1(: 
b7 

1

* Figure 9. System transition diagram for maintenance
of two component system.

Now, by using the transition probabilities in matrices Ml

* and M2 or directly using the numbers in Figure 9 the system

transition matrix for maintenance is as follows:

1 0 0 0 0 0 0 0 0
b6 b7 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
a6 0 0 a7 0 0 0 0 0

M= aSb6 a6b7 0 a7b6 a7b7 0 0 0 0
0 0 a6 0 0 a7 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 b6 b7 0
0 0 0 0 0 0 0 0 1

Matrix M is a lower triangular matrix because it represents

only the system upgrade.
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Now we are ready to write the first equation of the

linear, state-space formulation:

X =( - I)Tx(t) + (M - I) u(t)

= AX(t) + BU(t) (45)

where U(t) = X(t) , when t is a maintenance period, and

= 0 , otherwise.

And both U(t) and X(t) are 9xl column matrices. The equation

(45) is the same as equation (28) which is derived for

single component.

To find the system output, the reliability, we need to

define the C matrix. Since, two component are in parallel,

the system is operative if any one of the components is

operative. This means that the system is operative in every

state except state 9 which both components are failed.

Therefore, to find the system reliaility, we need to find

the sum of the probabilities of being in first eight

states. And the C matrix should be a ix9 row matrix as

follows:

C= [1 1 1 1 1 1 1 1 0]

and the system output is:

Y = CX(t) (46)

Again the -quation (46) is the same as equation (29) which

is derived for single components output.
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Two Components in Series

This system also has two components, but the components

are connected in series. This system is pictured in Figure

10.

Component 1 Component 2
LII,LI2,LI3 L21,L22,L23

Figure 10. Two component in series.

Again the two components have the same transition probabili-

ties as assigned in the first system and in Figure 10.

Clearly, cianging the connection type does not change the

system states. The same system states defined in Table 6 can

be used for this system too. And by using the same transi-

tion matrices in (43) and (44) for components, the system

transition matrices become the same as they were in the

parallel system. Equation (45) is also valid for this sys-

tem.

Because the only difference between two systems is the

connection type, the formulation for two systems will differ

only in the output. The serial system is operative only if

the both components are operative. That is, when it is in

states 1, 2, 4, or 5. Therefore the C matrix in the serial

case will have ones as its first, second, fourth and fifth

elements and zeros for all others:
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C= i i 1 0 0 0 0]

A Three Component System

This system combines the first two models. It has two

components in parallel and the third one serial to the first

two. This system is pictured in Figure 11.

Component 1
LII,LI2,L13

Component 3

A3
Component 2

L21, L22 ,L23
g2

Figure 11. A three component system.

To find the system states, we need to look at the every

possible combinations of all three components' operating

conditions. And this will give 27 system states as in the

classical Markov modelling. This states are listed in Table

7 where P, D and F represents the corresponding component's

condition.

The system states in Table 7 can be represented in more

understandable way. Instead of listing from 1 to 27, let us

define a three component state vector. Which every element

in the vector represents one component's condition and can
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have the value of 1, 2 or 3 corresponding to perfect, de-

graded and failed states. For example, state 1 which all

three components are in perfect condition can be represented

as <1,1,1>, or state 27 which all components are inoperative

can be represented as <3,3,3>. Clearly combinations of three

numbers in 3 dimensional vector generates 27 different vec-

tors. And if we arrange this state vectors as three digit

numbers from smaller to bigger, then the same order of

states in Table 7 can be produced.

System Condition of Condition of Condition of
states component 1 component 2 component 3

1 P P P
2 P P D
3 P P F
4 P D P
5 P D D
6 P D F
7 P F P
8 P F D
9 P F F

10 D P P
11 D P D
12 D P F
13 D D P
14 D D D
15 D D F
16 D F P
17 D F D
18 D F F
19 F P P
20 F P D
21 F P F
22 F D P
23 F D D
24 F D F
25 F F P
26 F F D
27 F F F

Table 7. System states for three component system.
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Two 27x27 matrices can be generated as matrix M and matrix

T in the same manner as the first two systems. For example,

in matrix M the transition probability from state <1,1,1> to

<3,3,3> can be found by multiplication of each three com-

ponents' transition probabilities from state l(perfect) to

state3(failed): LllxL2lxL31.

For matrix C, the entry for state <i,j,k> is 1 if either i

or j is not equal to 3 and k is 1 or 2. That is at least one

of the parallel components is operative and component 3 is

operative. In all other cases the entry in matrix C will be

zero. Matrix C should be as follows:

C = [I 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 01

By using the state vector idea in the next section, a

general method will be presented for building the system

matrices.

How To Build System Matrices

To be able to use the same program for any system we need

to find a method that by using this method the system

matrices can be generated by the computer. Otherwise for

large complex systems, building the matrices of the system

would take too much time. To improve our program in this

way, we need to define a method to interpret the multicom-

ponent systems with minimum amount of data.

49



To interpret the systems we could think of them a col-

lection of the simple components and connections between the

components. In first two systems studied above, component 1

and component 2 may represent two multicomponent systems

connected to each other in parallel or in series. And in

this case the system transition matrices M and T can be

generated in the same way by using the binary state vector

combinations. Only difference will be the size of the

matrices. For example, let us look at the parallel connec-

tion of the first two systems as it is pictured in Figurel2.

Component 1
Lll,LI2,LI3

Component 2
L21,L22,L23

g2

Conmponent 3 Component 4

L31,L32,L33 - L41,L42,L43
143 44

Figure 12. Two two component systems in parallel.

Now if we list the two component state vectors which both

entries in the state vector has the range of 1 to 9 we can

generate all the system states and calculate the system

transition matrices M and T.
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For the C matrix we need to use the information about the

connection type. For example the entry for state <3,2> in

the C matrix should be 1, because the upper part of the

system is operative(Component 1 is in perfect state and

component 2 is in failed state) and also the lower part of

the system is operative(component 3 is in perfect state and

component 4 is in degraded state). This result can be found

faster by using the C matrices of each part. Because the 3rd

entry of the C matrix of upper part is 1 which means opera-

tive and the 2 entry of the C matrix of lower part is also

1. If we look at the states <9,3>, <9,6>, <9,7>, <9,8> or

<9,9> the entry in the C matrix should be 0, because both

parts in a parallel connection are inoperative. This could

be seen from the individual C matrices, because the 9th

entry of upper part's C matrix and 3
rd , 6 th, 7 th , 8 th , 9th

entries of the lower part's C matrix are all zero indicating

that in this states both parts are inoperative.

In order to interpret a system which has more than one

simple component, the smallest dimension of the state vector

is 2. And by choosing a proper range for the entries in the

state vector, any system can be interpreted by two dimension

state vectors. For example if we add a 5 th component serial

to the system in Figure 12, the first entry in the state

vector will have the range of 81, and, since the new part is

a simple component the second entry will have the range of

3. Combination of these numbers will generate 243(=35)

states of a 5 component system.
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This examples showed that any system can be analyzed by

evaluating its parts as couples connected to each other in

parallel or in series. By starting from simple components

the whole system can be analyzed step by step. Now we need

to define the term couple:

Definition: A couple is a subsystem which is composed of

two parts where the two parts may be simple components or

some other couples. Simple components have three operating

states. And every couple has a connection type of either

parallel or serial.

By using this definition the system in Figure 12 has 3

couples. The first couple is component 1 and component 2 and

the connection type is parallel. The second couple is com-

ponent 3 and component 4 and the connection type is serial.

And the third couple is the couple composed of couple 1 and

couple 2 and its connection type is parallel.

If the first part in a couple has m states and the second

part has n states then couple will have mxn states. And the

first entry in state vector will have the range of m while

the second entry has the range of n.

Every couple has a matrix M, matrix T and matrix C. To

find the elements of that matrices let Tl, Ml, Cl be the

matrices of part one and T2, M2, C2 be the matrices of part

two. The transition rates from state <i,j> to <k,l> or the

elements in the intersection of row <i,j> and column <k,l>

of the matrices T and M can be found through the following

equations:
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T(<i,j>,<k,l>) = _l(<i,k>) x T2(<j,l>) (47)

M(<i,j>,<k,l>) = Ml(<i,k>) x M2(<j,l>) (48)

and

1, if Cl(<i>) = C2(<j>) = 1
C(<i,j>) = I, if Cl(<i>) + C2(<j>) = 1 and (49)

connection type is parallel
0, otherwise.

To illustrate these equations in an example, let us rename

the 9 states of two component system, given in Table 6, from

<1,1> to <3,3> and use the same transition probabilities in

matrices (43) and (44). Then the transition probability from

state <2,1> to state <2,3>(from degraded perfect to degraded

failed) during the normal operation is (1-L13)*L21 and would

be calculated with Eq. (47) as:

T(<2,1>,<2,3>) = TI(<2,2>) x T2(<1,3>) = a4b3 = (1-L13)*L21

which is the same as the 6th element of the 4th row of T

matrix in page 43. The transition probability during the

maintenance action should be zero, because the second

component can not fail while the system is under mainte-

nance. The same result can be found with Eq. (48) as:

M(<2,1>,<2,3>) = MI(<2,2>) x 2(<1,3>) = (a7)(0) = 0

which is the same as the 6th element of the 4th row of M

matrix in page 44. The entry in the C matrix of the parallel

couple for state <2,3> should be 1, because the first com-

ponent is still operative. The same result can be obtained

with Eq.(49), because Cl(<2>)+C2(<3>) = 1+0 = 1 and connec-

tion type is parallel.

53



Now, the next thing we need to do is to add an additional

routine to the previous program which builds the system

matrices according to the rules (47), (48), and (49).

Modifications on The Program

The program treats every component and every couple as a

permanent entity. Attributes which define every component

are its transition probabilities, L1, L2, L3, and g. In the

first program components were represented directly by their

transition matrices but for multicomponent models it takes

too much storage. A routine called EXTRACT.MATRICES builds

the component's matrices only when they are needed. After

they are used, the program releases all component matrices.

Every couple has eight attributes called Part one, Part

two, Number one, Number two, Connection type, A matrix, B

matrix, and C matrix. The new routine called BUILD.MATRIXES

starts with first simplest couple(would be a simple com-

ponent) and builds the transition matrices step by step

until the last couple, the system itself.

This routine is basicly four nested "for loop" which

starts with the first row of the first part's transition

matrices and takes the combinations of the elements of this

row with the first row of the second part's transition

matrices by order to find the first row of the couple's A

matrix or B matrix.
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This continues with the other rows of the second part's

matrices to find all combinations for the first row of the

first part's matrices. The same process continues for each

row in the first part's matrices. For C matrix a variable

called SCALE is set to one for serial connection and zero

otherwise. This variable is then subtracted from the sum of

the entries in the both parts' C matrixes for every combina-

tion. If the result is bigger then zero then the entry in

the new C matrix is set to 1, otherwise it is set to zero.

If the connection is parallel, the result is zero if and

only if the both numbers from two matrices are zero(both

parts are inoperative). If the connection is serial, the

result is one if and only if both numbers from two matrices

are one(both parts are operative). Once a couple's matrices

are built, the old matrices belonging to the parts of the

couple are released so that the memory usage is dynamically

minimized.

To ease data entry two new editing menu were added to the

program. One menu is used for editing a specific component's

parameters and the other menu is used for editing a specific

couple's parameters.

Both menus can be pulled down any time before or after the

simulation. This gives the ability to run the same system

with slight changes without the need to enter all the

system parameters again or to leave the program for a few

changes in the input file.
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Another routine called RECORDER was also added to the

program. This routine records the system output(Reliability)

for given time periods. In this way the output of a run can

be saved for later analysis.

Input File Format

The input file has three paragraphs. First paragraph is

used for components, the second paragraph is used for

couples, and the last is used for the maintenance period,

recording period, and simulation time.

The first line of the first paragraph is the number of

components and the each following line gives the components'

parameters(Ll, L2, L3, g) by order.

The first line of the second paragraph is the number of

couples and the each following line gives the couples'

parameters(Part one, Part two, Ccnnection type) by order.

0I
4
L11 L12 L13 Al

L21 L22 L23 p2
L31 L32 L33 A3
L41 L42 L43 A4

3
PARALLEL COMPONENT 1 COMPONENT 2
SERIAL COMPONENT 3 COMPONENT 4
PARALLEL COUPLE 1 COUPLE 2

MAINTENANCE.PERIOD
RECORDING.PERIOD
SIMULATION.TIME

Figure 13. An example input file.
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The last paragraph consists of three lines: maintenance

period, recording period, and simulation time in seconds.

The input file for the system in Figure 12 should look

like Figure 13.

Example Outputs

To illustrate the implication of the last modifications

let us run the program for the parallel and serial couples

given in Figure 8 and Figure 10. The same parameters given

in Table 3 will be used for both parts in the couples.

System matrices except matrix C are the same for both paral-

lel and serial couple:

-.445 .0 .0 .0 .0 .0 .0 .0 .0
.186 -.330 .0 .0 .0 .0 .0 .0 .0
.004 .075 -.255 .0 .0 .0 .0 .0 .0
.186 .0 .0 -.330 .0 .0 .0 .0 .0

A = (T-I)T= .062 .225 .0 .225 -.190 .0 .0 .0 .0
.001 .025 .250 .004 .090 -.100 .0 .0 .0
.004 .0 .0 .075 .0 .0 -.255 .0 .0
.001 .004 .0 .025 .090 .0 .250 -.10 .0
.000 .001 .005 .001 .010 .100 .005 .100 .0

0. 1. 0. 1. 1. 0. 0. 0. 0.
0. -1. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0. 0.
0. 0. 0. -1. 0. 0. 0. 0. 0.

B = (M-I)T - 0. 0. 0. 0. -1. 0. 0. 0. 0.
0. 0. 0. 0. 0. -1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 0. 0. 0. -1. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
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.956 0. 0. 0. 0. 0. 0. 0. 0.
* .018 .968 0. 0. 0. 0. 0. 0. 0.

.0004 .007 .975 0. 0. 0. 0. 0. 0.

.018 0. 0. .968 0. 0. 0. 0. 0.
AT = .006 .022 0. .022 .981 0. 0. 0. 0.

.0002 .003 .025 .0005 .009 .990 0. 0. 0.

.0004 0. 0. .007 0. 0. .975 0. 0.
* .0002 .0005 0. .003 .009 0. .025 .990 0.

.000 .0001 .001 .0001 .001 .01 .001 .01 1.

0. .098 0. .098 .098 0. 0. 0. 0.
0. -.097 0. .OC- .001 0. 0. 0. 0.
0. -. 0003 0. .000 .000 .099 0. 0. 0.
0. .001 0. -.097 .001 0. 0. 0. 0.

BT  0. -.001 0. -.001 -.099 0. 0. U. 0.
• 0. -.0001 0. -.000 -.0004 -.098 0. 0. 0.

0. .000 0. -.0003 .000 0. 0. .099 0.
0. -. 000 0. -. 0001 -. 0004 0. 0. -. 098 0.
0. -.000 0. -.000 -.0001 -.0005 0. -.0005 0.

As given before, the C matrix for a parallel couple is:

CPARALLEL =[ 1 1 1 1 1 1 1 1 0]

And the C matrix for a serial couple is

CSERAL =[1 1 0 1 1 0 0 0 0]

Reliability range plots for both couples are given in

Figure 14 and Figure 15.
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Now the model is complete to use for the analysis of any

system. Only constraint on the capability of the program is

the memory and the speed of the particular machine on which

the program is used.

The summary of the whole research will be given in the

last chapter. Also the possible suggested areas for further

researchs will be addressed.
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* V. Summary And Conclusions

Summary of the Research

* The main purpose of this research was to develop a model

of scheduled preventive maintenance that can be used for

system reliability predictions. The most popular method

• among previously used modeling techniques is the Markov

modeling technique. And the motivation for the current

research came from the state growth problem of the Markov

modeling. The total number of states in a Markov model grows

exponentially as the number of components in the system

increase; the method becomes inefficient for large systems.

• The methodology chosen for this research was to use the

linear state-space formulation on the Markov model of the

systems under preventive maintenance.

* To simplify the problem, the modeling was done initially

on a single component system. After defining the Markov

states and deriving the difference equations for the single

* component under preventive maintenance, the theory behind

the linear, state-space formulation was introduced. The

linear, state-space formulation was then applied to the

• model of the single component by using a discrete time solu-

tion.
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The research objectives were to develop an easy-to-use

computer model, which approximates the exact solution of the

Markov model in a reasonable accuracy, runs fast, requires a

minimum amount of data and provides low operating cost. The

results of the first program written for the single compo-

nent system showed that the model meets the all objectives

with the accuracy of at least 10.5 on the system reliability

prediction.

• To expand the model to the multicomponent systems, a

method to build the system matrices was sought in the Chap-

ter IV. And the idea of couples was introduced as a tool to

• interpret the multicomponent systems and build the system

matrices iteratively. The process to build the system

matrices starts with the first single component and calcu-

• lates the combinations of the states of all components step

by step. With this method it is possible to run the model

with a minimum amount of data which includes only the tran-

* sition probabilities for all components and the connection

types between them.

* Conclusions of the Research Effort

The objectives of this research were met. A model which is

easy-to-use, which runs fast, and requires a minimum amount

* of data was developed. The user friendly features of the

program are:

- Initial input data can be entered in both ways; an input

• data file or directly the keyboard.
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- The reliability plot is provided during the simulation

as well as in an output data file in which the system relia-

bility is recorded for desired time periods.

- The input menus also allow for sensitivity analysis, the

the same system may be analyzed again with slight changes.

The program is very efficient compared to the effort

required by classical Markov modeling. The main reason for

the efficiency of the model is that the model needs no

.,xtensive programming or modeling effort. Any system can be

analyzed with the minimum amount of data.

The program provides low operating cost. It runs on any

personal computer and saves modeling time. Sensitivity

analyses can be done very fast without additional prepara-

tions. The input data is saved until the end of the simula-

tion; and if the user wants to continue with the same sys-

tem, the program introduces the input menus and reruns the

same system with the new set of parameters.

The results produced by the program are very dependable.

Validation studies in Chapter III showed that the results

are accurate to at least five digits.

The input data includes the transition probabilities of

each component and the connection types between the com-

ponents. The maintenance period, simulation time and, if

desired, the recording period are also needed as inputs.
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Suggested Areas of Further Research

The further research areas can be directed in two ways.

One is to improve the program which was developed in this

research. And the second is to accompany the model with an

objective function and add an optimization task to the

program.

In this research, Simscript II.5_PC was selected as the

programming language. The current program can be improved in

two ways:

- The same program may be modified to run more efficiently

with the same language.

- Or another language can be used. Simscript has some very

good features but it may not be the fastest language for the

purpose.

The program is already very useful for the "what-if" type

studies of the design engineers during the early design

process. But a logistics planner also wants to know the

operating cost of the system under suggested maintenance

action. In other words he needs to predict the expenses of

the maintenance and more than that needs to optimize the

useful life of the system under the budget constraints.

Therefore the most important further research area is to

accompany this model with an optimization problem. Two dual

problems can be introduced; maximizing the system relia-

bility for a given maintenance budget or minimizing the

maintenance expenses for a required system reliability.
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APPENDIX

0 Computer Program Source Code

This program written in Simscript II.5_PC to run on any

IBM PC compatible computer. Program accepts the input data

either from a data file(INPUT.DAT) or directly from the

keyboard. Outputs include a run time graphics screen, an

output file for system matrices(OUT.DAT) and another output

file(RECORD.DAT) to record system reliability in given time

* periods.

To run the program a graphics file(TRACE.GRF) is needed

which can be easily generated by using Simscript's graphics

editor.
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preamble

define INDEX and ERROR.FLAG as integer variables
define T,MAINT.PERIOD, REC.PERIOD and SIM.TIME

* as real variables
define ERROR.MESSAGE as a text variable
define MATRIX.A,

MATRIX.B,
MATRIX.C,

AT,
* BT,

UT,
XT,
E

and INPUT.MATRIX as 2-dim,real arrays

permanent entities
every COMPONENT has

an L1,
an L2,
an L3

and a Mu
define LI,L2,L3,Mu as real variables

every COUPLE has
a CONNECTION.TYPE,
a PART.ONE,
a PART.TWO,

* a NUMBFR.ONE,
a NUMBER.TWO,

an A.MATRIX,
a B.MATRIX

and a C.MATRIX
define CONNECTION.TYPE, PART.ONE and PART.TWO as text

variables

define A.MATRIX,B.MATRIX,C.MATRIX, NUMBER.ONE and NUMBER.TWO
as integer variables

processes include MAINTENANCE, SYSTEM.OPERATION, OUTPUT
and RECORDER

display variables include RELIABILITY
define RELIABILITY as a real variable

end ''PREAMBLE

MAIN

call INTRO.MESSAGE
start simulation

end ''MAIN
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routine BUILD.MATRIXES.OF (THIS.COUPLE)

define THIS.COUPLE, I,J,K,L,M,N,P,R,S,SCALE as integer
variables

define Al,A2,Bl,B2, C1,C2,NEW.A,NEW.B,NEW.C
as 2-dim, real arrays

select case CONNECTION. TYPE (THIS. COUPLE)

case "PARALLEL" f "parallel", "1P11, 1 "p"
let SCALE = 0

case "SERIAL", "serial", "IS", "is"'
let SCALE = 1

default
endselect

if (PART.ONE(THIS.COUPLE) ="COUPLE") or
(PART.ONE(THIS.COUPLE) = "couple")

let Al(*,*) = A.MATRIX(NUMBER.ONE(THIS.COUPLE))
let Bl(*,*) = B.MATRIX(NUMBER.ONE(THIS.COUPLE))
let C1(*,*) = C.MATRIX(NUMBER.ONE(THIS.COUPLE))

else

call EXTRACT.MATRIXES.OF(NUMBER.ONE(THIS.COUPLE))
yielding Al(*,*),

and Cl(*,*)
always

if (PART.TWO(THIS.COUPLE) = "COUPLE") or
* (PART.TWO(TH-IS.COUPLE) = "couple"1 )

let A2(*,*) = A.MATRIX(NUMBER.TWO(THIS.COUPLE))
let B2(*,*) = B.MATRIX(NUMBER.TWO(THIS.COUPLE))
let C2(*,*) = C.MATRIX(NrJMBER.TWO(THIS.COUPLE))

else

call EXTRACT.MATRIXES.OF(NUMBER.TWO(THIS.COUPLE))
yielding A2(*,*),

82 (*, *)
and C2(*,*)

always
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let N = dim.f(Al(*,*))

reserve NEW.A and NEW.B as (N*M) by (N*M)
reserve NEW.C as 1 by (N*M)

let P =o ''Reset row # of NEW.A & NEW.B.
for I i 1to N ''Index for rows of Al or B1.
do
for K = i to M ''Index for rows of A2 or B2.
do
let P = P+1 ''Current row # for NEW.A & NEW.B
let S = Cl(l,I)+C2(1,K)-SCALE ''Calculate column P of

NEW.C.
if S gt 0

let NEW.C(l,P) =1
otherwise
let NEW.C(l,P) =0

always

let R = 0 ''Reset column # of NEW.A & NEW.B.

for J = 1 to N ''Index for columns of Al or B1.
do
for L = 1 to M ''Index for columns of A2 or B2.
do
let R =R+1 ''Current column # for NEW.A & NEW.B.

let NEW.A(P,R) = Al(I,J)*A2(K,L)
let NEW.B(P,R) = Bl(I,J)*B2(K,L)

loop
loop

loop
loop

let A.MATRIX(THIS.COUPLE) = NEW.A(*,*)
let B.MATRIX(THIS.COUPLE) = NEW.B(*,*)
let C.MATRIX(THIS.COUPLE) = NEW.C(*,*)

let MATRIX.A(*,*) = NEW.A(*,*)
let MATRIX.B(*,*) = NEW.B(*,*)
let MATRIX.C(*,*) = NEW.C(*,*)

release Al,A2,Bl,B2,Cl and C2 ''Get rid of the old
matrixes.
end ''BUILD.MATRIXES
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routine COMPONENT.MENU(N)

define N as an integer variable
define CHOICE as an alpha variable
define ANSWER as a real variable

call vbcolor.r(l)
call vfcolor.r(15)
let lines.v = 0

while 0 = 0
do

call vclears.r
print 10 lines with N, L(N), L2(N), L3(N), Mu(N) thus

EDITING COMPONENT # *

Ll,transition from perfect to failed =
L2,transition from perfect to degraded =
L3,transition from degraded to failed =
Mu,repair rate *

print 10 lines thus

1) Change Ll
2) Change L2
3) Change L3
4) Change Mu

D) Done with this component

call vgotoxy.r(21,0)
write as "Enter your choice => ", +
call rcr.r
read CHOICE as A 1
call vgotoxy.r(21,0)
call vclearl.r

select case CHOICE

case "1"
write as "Enter new Ll => " +
read ANSWER
let Ll(N) = ANSWER
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* case "12"
write as "Enter new L2 => ",+

read ANSWER
let L2(N) = ANSWER

case "13"
* write as "Enter new L3 => ",+

read ANSWER
let L3(N) = ANSWER

case "14"
write as "Enter new Mu => "1, +

* read ANSWER
let Mu(N) = ANSWER

case I'D", "ld" , "tE" , 'fl 'IQ" , "q" , "X'' fi-
leave

* default
endselect

loop
end ''COMPONENT. MENU
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routine COUPLE.MENU(N)

define N and NUMBER as an integer variable
define CHOICE as an alpha variable
define ANSWER as a text variables

call vbcolor.r(l)
call vfcolor.r(15)
let lines.v = 0

while 0 = 0
do

call vclears.r

print 10 lines with N, CONNECTION.TYPE(N),
PART.ONE(N), NUMBER.ONE(N),
PART.TWO(N), NUMBER.TWO(N) thus

EDITING COUPLE # *

Connection type
Part One
Number One
Part Two
Number Two

print 10 lines thus

1) Change Connection Type
2) Change Part One
3) Change Number One
4) Change Part Two
5) Change Number Two

D) Done with this couple

call vgotoxy.r(21,O)
write as "Enter your choice => ", +
call rcr.r
read CHOICE as A 1
call vgotoxy.r(21,0)
call vclearl.r

select case CHOICE

case "1
write as "Enter new connection type => ", +

read ANSWER
let CONNECTION.TYPE(N) = ANSWER
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case "2"
write as "What Is New Part One => ", +
read ANSWER
let PART.ONE(N) = ANSWER

case "3"
write as "Enter new Number One => " +
read NUMBER
let NUMBER.ONE(N) = NUMBER

case "4"
write as "What Is New Part Two => " +
read ANSWER
let PART.TWO(N) = ANSWER

case "5"
write as "Enter new Number Two => " +
read NUMBER
let NUMBER.TWO(N) = NUMBER

case "D", "d" "E" "e" , "Q" , "q" "X" "x"1

leave

default
endselect

loop
end ''COUPLE.MENU

routine EXTRACT.MATRIXES.OF (THIS.COMPONENT) yielding ARRAY1,
ARRAY2

and ARRAY3
define THIS.COMPONENT as an integer variable
define ARRAY1, ARRAY2, ARRAY3 as 2-dim, real arrays
reserve ARRAY1 AND ARRAY2 as 3 by 3
reserve ARRAY3 as 1 by 3

let ARRAY1(i,I)=l-(LI(THIS.COMPONENT)+L2(THIS.COMPONENT))
let ARRAY1(2,1) = L2(THIS.COMPONENT)
let ARRAY1(3,1) = LI(THIS.COMPONENT)
let ARRAY1(2,2) = I-L3(THIS.COMPONENT)
let ARRAY1(3,2) = L3(THIS.COMPONENT)
let ARRAY1(3,3) = 1

let ARRAY2(1,1) = 1
let ARRAY2(i,2) = Mu(THIS.COMPONENT)
let ARRAY2(2,2) = I-Mu(THIS.COMPONENT)
let ARRAY2(3,3) = 1

let ARRAY3(1,1) = 1
let ARRAY3(1,2) = 1

end ''EXTRACT.MATRIXES
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routine INITIALIZE

define I and N as integer variables

let N = N.COUPLE
if N.COUPLE gt 0

for I = 1 to N
call BUILD.MATRIXES.OF(I)

else
call EXTRACT.MATRIXES.OF(l) yielding MATRIX.A(*,*),

MATRIX.B(*,*)
and MATRIX.C(*,*)

always

let N = dim.f(MATRIX.A(*,*))

reserve AT and BT as N by N
reserve UT, XT and INPUT.MATRIX as N by 1

for I = 1 to N
do

let MATRIX.A(I,I) = MATRIX.A(I,I)-l
let NATRIX.B(I,I) = M-ATRIX.B(I,I)-l

loop

let XT(I,I) = 1.0
let T = 0.1

call MATRIXE (MATRIX.A(*,*),T) yielding E(*,*)
'' Find E matrix

call MATRIXAT (MATRIX.A(*,*),E(*,*)) yielding AT(*,*)
''Find matrix At

call MATMUL (E(*,*),MATRIX.B(*,*),BT(*,*)) '' Find matrix Bt

open unit 3 for output, file name is "OUT.DAT"
use 3 for output

for I = 1 to dim.f(AT(*,*))
do
skip 1 output lint
for N 1 to dim.f(AT(*,*))
write MATRIX.A(I,N) as D(7,3)

loop

73

i 6 n i m u 
u u



skip 1 output line
for I = 1 to dim.f(AT(*,*))
do

* skip 1 output line
for N = 1 to dim.f(AT(*,*))
write MATRIX.B(I,N) as D(7,3)

loop

skip 1 output line
* for I = 1 to dim.f(AT(*,*))

do
skip 1 output line
for N =1 to dim.f(AT(*,*))
write AT(I,N) as D(10,7)

loop

skip 1 output line
for 1 = 1 to dim.f(AT(*,*))
do
skip 1 output line
for N = 1 to dim.f(AT(*,*))

* write BT(I,N) as D(10,7)
loop

skip 1 output line
for I = 1 to dim.f(AT(*,*))
write MATRIX.C(l,I) as D(7,3)

* close unit 3

release MATRIX.A, MATRIX.B, E, UT

* let RELIABILITY =1.0
let time.v = 0.0 ''Reset simulation clock.

Modify the trace icon to match parameters entered by user

show RELIABILITY with 11TRACE.GRF"1

define AXARRAY as 1-dim real array
let AXARRAY(*) = dcry.a(f.display.s(a.reliability))
let AXARRAY(1) =0 'min value
let AXARRAY(2) =SIM.TIME ''max value
let AXARRAY(3) = trunc.f(SIM.TIME/20) ''thick marks

* if SIM.TIME le 10
let AXARRAY(3) =.5

endif
if AXARRAY(5) ne 0

let AXARRAY(5) = trunc.f(SIM.TIME) ''grid interval
endif

0 let AXARRAY(6) = trunc.f(SIM.TIME/5) ''number interval
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if SIM.TIME gt 99
let AXARRAY(18) = 4
let AXARRAY(19) = 0

endif

define DEVPTR as a pointer variable
call devinit.r("VT, GRAPHIC") yielding DEVPTR
open 7 for input, device = DEVPTR

* open 8 for output, device DEVPTR
use 8 for graphic output

let ERROR.FLAG 0
let RELIABILITY = 1.0
activate a MAINTENANCE now

* activate a SYSTEM.OPERATION now
activate an OUTPUT now
activate a RECORDER now

end ''INITIALIZE
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routine INPUT.MENU

define CHOICE as an alpha variable
define ANSWER as an integer variable
define ANSWER2 as a real variable

call vbcolor.r(l)
call vfcolor.r(15)
let lines.v = 0

while 0 = 0
do

call vclears.r
print 10 lines with MAINT.PERIOD, REC.PERIOD, SIM.TIME thus

MAIN INPUT MENU

Current Maintenance Period in Seconds is =
Current Recording Period in Seconds is =

Current Simulation Time in Seconds is =

print 10 lines thus
1) Edit a Component
2) Edit a Couple
3) Change the Maintenance Period
4) Change the Recording Period
5) Change the Simulation Time

R) Run the simulation
E) P- the simulation

call vgotoxy.r(21,O)
write as "Enter your choice => ", +
call rcr.r
read CHOICE as A 1
call vgotoxy.r(21,0)
call vclearl.r

select case CHOICE

case "1"
write as "Enter The Component Number To Be Edited =>

read ANSWER
call COMPONENT.MENU(ANSWER)
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case "2"
write as "Enter The Couple Number To Be Edited => ", +

read ANSWER
call COUPLE.MENU(ANSWER)

case "3"
write as "Enter new Maintenance Period=> ", +
read ANSWER2
let MAINT.PERIOD = ANSWER2

case "4"
write as "Enter new Recording Period=> ", +
read ANSWER2
let REC.PERIOD = ANSWER2

case "5"
* write as "Enter new Simulation Time => " +

read ANSWER2
let SIM.TIME = ANSWER2

case "R", "r"
leave

case "Ell, "el, "Q", "q" , "X" "x"
stop

default
endselect

loop
call vclears.r
print 21 lines thus

####################################

# PLEASE WAIT FOR INITIALIZATION #

* At the end of the program:

First press the Enter.
And wait for the report.

call INITIALIZE
end ''MENU
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routine INTRO.NESSAGE
define CHOICE as an alpha variable
define ANSWER as an integer variable

call vbcolor.r(l)
call vfcolor.r(15)
let lines.v = 0
call vclears.r
print 15 lines thus

A MODEL FOR PREVENTIVE MAINTENANCE
Written by 1st LT M. E. GUNES

This program calculates and graphs the resulting reliability of
multicomponent systems under preventive maintenance. The program
solves a linear state space model by discrete time steps. And uses
the transition rates, maintenance period, total simulation time etc.
as inputs which can be entered either by a data file or by keyboard.

Now you may continue by answering the first question by YES(Y or y)
which means that a data file(under this directory and called
INPUT.DAT) will be used for input. Or you may enter the whole
information by answering the first question by NO(N or n).

call vgotoxy.r(21,O)
write as "Are you using a data file (y/n) => ", +
call rcr.r
read CHOICE as A 1
call vgotoxy.r(21,0)
call vclearl.r

select case CHOICE

case "Y" , "y"

call vclears.r
call READ.DATA.FILE

case "N" "n"
write as "How many components does the system has ? => ",+

read ANSWER
let N.COMPONENT = ANSWER
create every COMPONENT

call vgotoxy.r(21,0)
call vclearl.r
write as "How many couples does the system has ? => ", +

read ANSWER
let N.COUPLE = ANSWER
create every COUPLE

call INPUT.MENU
default
endselect
end ''INTRO.MESSAGE
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process MAINTENANCE

define XXT, C1 and C2 as 2-dim, real arrays
reserve C1 and C2 as 1 by 1
let C1(1,1) = 1
let N = dim.f(INPUT.MATRIX(*,*))
reserve XXT as N by 1

while time.v < SIM.TIME
do
wait MAINT.PERIOD units

if ERROR.FLAG = 1
leave

always

call MATMUL(BT(*,*),XT(*,*),INPUT.MATRIX(*,*))
for I = 1 to N
let XXT(I,I) = XT(I,1)+INPUT.MATRIX(I,I)

call MATMUL(MATRIX.C(*,*),XXT(*,*),C2(*,*))

if C2(1,1) gt C1(1,1) or C2(1,1) gt 1

let ERROR.MESSAGE = "SORRY! Data Error I Can't Go Further."
let ERROR.FLAG 1
let RELIABILITY = 0.0
leave

always

let C1(1,I) = C2(1,I)
loop

return
end ''MAINTENANCE

routine MATMUL given A,B and C

define A,B and C as 2-dim real arrays
define N,M,S,I,J,K as integer variables
let N = dim.f(A(*,*))
let M = dim.f(A(l,*))
let S = dim.f(B(1,*))

for I = 1 to N
for K = 1 to S

do
let C(I,K) = 0

for J = 1 to M
add A(I,J)*B(J,K) to C(I,K)

loop
return

end ''MATMUL
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routine MATRIXAT given A and E yielding AT

define I and N as integer variables
define A, E and AT as 2-dim real arrays

let N = dim.f(A(*,*))
reserve AT as N by N

call MATMUL(A(*,*),E(*,*),AT(*,*))

for I = 1 to N
add 1 to AT(I,I)

return

end ''MATRIXAT

routine MATRIXE given A and T yielding E

define A, AA, AAA and E as 2-dim real arrays
define T as a real variable
define I, K, N as integer variables

let N = dim.f(A(*,*))
reserve AA.AAA,E as N by N

call MATMUL(A(*,*),A(*,*),AA(*,*)l
call MATMUL(A(*,*),AA(*,*),AAA(*,*))

for I = 1 to N
for K = 1 to N
do

add (A(I,K)/2)*T*T to E(I,K)
add (AA(I,K)/6)*T*T*T to E(I,K)
add (AAA(I,K)/24)*T*T*T*T to E(I,K)
if I equal to K

add T to E(I,K)
always

loop

release AA and AAA

return

end ''MATRIXE
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process OUTPUT
define Y as 2-dim real array
reserve Y as 1 by 1

while time.v < SIM.TIME
do
work T units

call MATMUL(MATRIX.C(*,*),XT(*,*),Y(*,*))

if ERROR.FLAG = 1 or Y(1,1) gt 1
let ERROR.FLAG 1
let RELIABILITY = 0.0

let ERROR.MESSAGE = "SORRY ! Data Error I -an't Go Further."

leave
always

let RELIABILITY = Y(1,1)
loop

release Y
end ''OUTPUT

routine READ.DATA.FILE

define N as an integer variable
open unit 3 for input, name is "INPUT.DAT"
use 3 for input

read N
create every COMPONENT(N)
for each COMPONENT
do
read LI(COMPONENT), L2(COMPONENT), L3(COMPONENT),

Mu(COMPONENT)
loop

read N
if N gt 0

create every COUPLE(N)
for each COUPLE
do

read CONNECTION.TYPE(COUPLE), PART.ONE(COUPLE),
NUMBER.ONE(COUPLE), PART.TWO(COUPLE), NUMBER.TWO(COUPLE)

loop
always
read MAINT.PERIOD
read REC.PERIOD
read SIM.TIME

close unit 3
call INPUT.MENU

end ''READ.DATA.FILE
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process RECORDER

open unit 3 for output, file name is "RECORD.DAT"
use 3 for output

write time.v as D(5,2)
write RELIABILITY as D(12,8)
start new output line

while time.v < SIM.TIME
do

if REC.PERIOD = 0.0
leave

always

if ERROR.FLAG = 1
leave

always

wait REC.PERIOD units

write time.v as D(5,2)
wait 0.0001 units
write RELIABILITY as D(12,8)
start new output line

loop

if REC.PERIOD = 0.0
wait SIM.TIME+I0 units
always

close unit 3
read as /
call REPORT

end ''RECORDER
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routine REPORT

define CHOICE as an alpha variable

erase RELIABILITY
close unit 8
close unit 7

call vbcolor.r(l)
* call vfcolor.r(15)

let lines.v = 0

while 0 = 0

do

call vclears.r
print 10 lines with ERROR.MESSAGE, RELIABILITY,

MAINT.PERIOD, REC.PERIOD and SIM.TIME thus

Simulation is Ended With
RELIABILITY =

Maintenance Period(in Seconds) W-s =
Recording Period(in seconds) WaF =
Simulation Time(in Seconds) Was =

print 8 lines thus

Now you may,
R) Rerun the same system with new parameters or
E) Exit the simulation

let ERROR.MESSAGE = ""
call vgotoxy.r(19,0)
write as "Enter your choice => ", +

call rcr.r
read CHOICE as A 1
call vgotoxy.r(21,O)
call vclearl.r
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select case CHOICE

case h1R", 1 " r"
release MATRIX.C, AT, BT, XT and INPUT.MATRIX

* call INPUT.MENU
leave

case "E", fel, 11Q1, 11q , 9X", "X"

stop
default

* endselect
loop

end ''REPORT

process SYSTEM.OPERATION

define DUMMY as 2-dim real array
define I and N as integer variables

let N = dim.f(XT(*,*))

reserve DUMMY as N by 1
while time.v < SIM.TIME

do
* work T units

if ERROR.- .AG = 1
leave

always
call MATMUL(AT(*,*),XT(*,*),DUMMY(*,*))

* for I = 1 to N
do

let XT(I,l) = DUMMY(I,I)+INPUT.MATRIX(I,l)
let INPUT.MATRIX(I,l) = 0.0

loop

loop

release DUMMY
return

end ''SYSTEM.OPERATION
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